Alkylation with Substituted Phenacyl Bromides of Sodium Enolates from 6-Aryl-3,5,5-trimethyl-2,3,5,6-tetrahydropyran-2,4-diones

V.V.Shchepin, Yu. Kh. Sazhneva, N. Yu. Russkikh, and M.I. Vakhrin
Perm State University, Perm, 614600 Russia

Received April 18, 2001

We have established formerly that reaction of ethyl 2,4-dibromo-2,4-dimethyl-3-oxopentanoate with zinc and aromatic aldehydes gives rise to previously unknown 6-aryl-3,5,5-trimethyl-2,3,5,6-tetrahydro-pyran-2,4-diones [1]. It is known that tetrahydropyrandiones with substituents in 3-position containing a carbonyl group possess various kinds of biological activity [2-4]. Aiming at preparation of new tetrahydropyrandiones types with aroylmethyl group in 3 -position of the pyran ring we studied reactions between sodium enolates (II) obtained from 6-aryl-3,5,5-trimethyl-2,3,5,6-tetrahydropyran-2,4-diones (I) and para-substituted phenacyl bromides. The investigation established that the reaction between these compounds occurred readily in anhydrous DMSO yielding C -alkylation products of sodium enolates IIa-c, 6-aryl-3-aroylmethyl-3,5,5-trimethyl-2,3,5,6-tetrahydropyran-2,4-diones (IIIa-j).

Yields of synthesized compounds IIIa-j amount to $60-79 \%$. The composition and the structure of compounds IIIa-j were proved by elemental analysis, IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy. In the IR spectra are observed the characteristic absorption bands of carbonyl groups around 1680 (COAr), 1715 (CO), $1750 \mathrm{~cm}^{-1}$ (COO). In the ${ }^{1} \mathrm{H}$ NMR spectra appear characteristic singlets in the $0.97-1.13,1.50-1.63$, $6.00-6.17 \mathrm{ppm}$ region belonging respectively to the protons of methyl groups ($\left.\mathrm{CMe}_{2}, \mathrm{Me}\right)$, and to methine proton. Also is present a doublet of doublets from the protons of CH_{2} group at $3.77-4.03 \mathrm{ppm}$ with a coupling constant $J 18 \mathrm{~Hz}$. A single set of proton resonances for each of compounds obtained evidences the formation of a single geometrical isomer.

6-Aryl-3-aroylmethyl-3,5,5-trimethyl-2,3,5,6-tetrahydropyran-2,4-diones (IIIa-j). A dry sodium methylate obtained from 0.03 mol of Na and 10 ml of MeOH was dissolved in 15 ml of DMSO, and 0.02 mol of 6-aryl-3,5,5-trimethyl-2,3,5,6-tetrahydro-pyran-2,4-dione was added thereto. Methyl alcohol was distilled off under reduced pressure of a water-jet pump, and to residual solution was added 0.02 mol of substituted phenacyl bromide, the reaction mixture was stirred at $30-40^{\circ} \mathrm{C}$ for 30 min , and the it was poured into water. The separated precipitate was filtered off and recrystallized from acetone.
${ }^{1} \mathrm{H}$ NMR spectra, yields, melting points, and elemental analyses are presented in Tables 1 and 2.
${ }^{1} \mathrm{H}$ NMR spectra of compounds solutions in CDCl_{3} were registered on spectrometer RYa-2310 (60 MHz), internal reference HMDS. IR spectra were

Table 1. ${ }^{1} \mathrm{H}$ NMR spectra of 6-Aryl-3-aroylmethyl-3,5,5-trimethyl-2,3,5,6-tetrahydropyran-2,4-diones IIIa-j, δ, ppm

Compd. no.	CMe_{2}	CH_{3}	CH	R ${ }^{1}$	$\mathrm{CH}_{2}(J 18 \mathrm{~Hz})$	$4-\mathrm{R}^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$
IIIa	$\begin{aligned} & 1.00 \mathrm{~s}, \\ & 1.03 \mathrm{~s} \end{aligned}$	1.53 s	6.10 s	7.31 s (Ph)	$3.77 \mathrm{~d}, 3.93 \mathrm{~d}$	$7.47 \mathrm{~d}, 7.73 \mathrm{~d}\left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)$
IIIb	$\begin{aligned} & 1.07 \mathrm{~s}, \\ & 1.13 \mathrm{~s} \end{aligned}$	1.63 s	6.13 s	7.40 s (Ph)	$3.83 \mathrm{~d}, 4.03 \mathrm{~d}$	8.03 d, $8.33 \mathrm{~d}\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
IIIC	$\begin{aligned} & 1.03 \mathrm{~s}, \\ & 1.07 \mathrm{~s} \end{aligned}$	1.57 s	6.17 s	$\begin{gathered} 7.38 \mathrm{~s} \\ \left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	$3.83 \mathrm{~d}, 4.00 \mathrm{~d}$	7.57 d, $7.80 \mathrm{~d}\left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)$
IIId	$\begin{aligned} & 1.03 \mathrm{~s}, \\ & 1.08 \mathrm{~s} \end{aligned}$	1.57 s	6.07 s	$\begin{gathered} 7.33 \mathrm{~s} \\ \left(4-\mathrm{ClC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	$3.83 \mathrm{~d}, 4.00 \mathrm{~d}$	8.00 d, 8.27 d ($\left.4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
IIIe	1.00 s	1.55 s	6.13 s	$\begin{gathered} 7.32 \mathrm{~d}, 7.47 \mathrm{~d} \\ \left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	3.77 d, 3.97 d	$\begin{aligned} & 1.15 \mathrm{t}, 2.63 \mathrm{k}(\mathrm{Et}), 7.18 \mathrm{~d}, \\ & 7.80 \mathrm{~d}\left(4-\mathrm{EtC}_{6} \mathrm{H}_{4}\right) \end{aligned}$
IIIf	1.03 s	1.57 s	6.17 s	$\begin{gathered} 7.30 \mathrm{~d}, 7.47 \mathrm{~d} \\ \left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	$3.80 \mathrm{~d}, 3.97 \mathrm{~d}$	$\begin{aligned} & 1.20 \mathrm{~s}(t-\mathrm{Bu}), 7.37 \mathrm{~d}, 7.83 \mathrm{~d} \\ & \left(4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}\right) \end{aligned}$
IIIg	0.97 s	1.50 s	6.10 s	$\begin{gathered} 7.27 \mathrm{~d}, 7.43 \mathrm{~d} \\ \left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	3.77 d, 3.93 d	$\begin{aligned} & 6.77-7.33 \mathrm{~m}, 7.67-8.08 \mathrm{~m} \\ & \left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right) \end{aligned}$
IIIh	$\begin{aligned} & 1.03 \mathrm{~s}, \\ & 1.07 \mathrm{~s} \end{aligned}$	1.57 s	6.13 s	$\begin{gathered} 7.37 \mathrm{~d}, 7.60 \mathrm{~d} \\ \left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	$3.80 \mathrm{~d}, 3.97 \mathrm{~d}$	$7.27 \mathrm{~d}, 7.77 \mathrm{~d}\left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)$
IIIi	$\begin{aligned} & 0.97 \mathrm{~s}, \\ & 1.02 \mathrm{~s} \end{aligned}$	1.53 s	6.00 s	$\begin{gathered} 7.20 \mathrm{~d}, 7.47 \mathrm{~d} \\ \left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right) \end{gathered}$	3.77 d, 3.97 d	$7.93 \mathrm{~d}, 8.20 \mathrm{~d}\left(4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
IIIj	1.00 s	1.55 s	6.13 s	$7.08-7.67 \mathrm{~m}$ (4-BrC6H4)	$3.77 \mathrm{~d}, 4.00 \mathrm{~d}$	$\begin{aligned} & 7.60 \mathrm{~d}, 7.93 \mathrm{~d}, 7.08-7.67 \mathrm{~m} \\ & \left(4-\mathrm{C}_{6} \mathrm{H}_{5-} \mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$

Table 2. Yields, melting points, and elemental analyses of 6-aryl-3-aroylmethyl-3,5,5-trimethyl-2,3,5,6-tetrahydropyran-2,4-diones IIIa-j

Compd. no.	Yield, \%	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	Found, \%		Formula	Calculated, \%	
			C	H		C	H
IIIa	65	186-187	61.44	4.82	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrO}_{4}$	61.54	4.90
IIIb	62	227-228	66.75	5.29	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{6}$	66.84	5.32
IIIC	69	213-215	56.87	4.27	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrClO}_{4}$	56.96	4.31
IIId	72	223-226	61.35	4.61	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClNO}_{6}$	61.47	4.66
IIIe	63	150-151	62.94	5.42	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrO}_{4}$	63.02	5.47
IIIf	60	182-183	64.20	5.90	$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BrO}_{4}$	64.33	5.98
IIIg	75	209-212	58.99	4.43	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrFO}_{4}$	59.06	4.47
IIIh	79	211-213	51.87	3.89	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{4}$	51.97	3.94
IIII	77	226-227	55.61	4.18	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}_{6}$	55.70	4.22
IIIj	71	202-204	66.41	4.90	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BrO}_{4}$	66.53	4.95

recorded on spectrometer UR-20 from mulls in mineral oil.

REFERENCES

1. Shchepin V.V., Sazhneva Yu.Kh., Russkikh N.Yu., Litsinov D.N., Zh. Org. Khim., 2000, vol. 36, no. 6,
pp. 808-810.
2. US Patent 4544399, 1985. Ref. Zh. Khim., 1986, 130467 P.
3. Australian Patent 560716, 1987. Ref. Zh. Khim., 1988, 110433 P.
4. US Patent 4544399, 1985. Ref. Zh. Khim., 1989, 50400.
